

2.4-2.5GHz, 100W, High Power RF LDMOS FETs

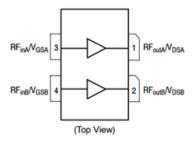
Description

The ITEH25100B4C is a dual path (A+B) 100W, internally matched LDMOS FETs, designed for multiple use especially RF Energy application including cooking, heating and medical with frequencies from 2400 to 2500MHz.

It is the low cost version of its ceramic peer: ITCH25100B4.

•Typical CW Performance (on Innogration fixture with device soldered) Vds=28V, Vqs=2V

Freq	Pin	Pout	Id	Eff
(MHz)	(dBm)	(W)	(A)	(%)
2400	40	123	7.97	55
2450	40	128	8.29	55
2500	40	112	7.25	55



Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	65	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

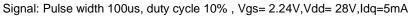
Document Number: ITEH25100B4C Preliminary Datasheet V1.1

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.5	°C/W
Tcase= 85°C, Tj= 200°C, DC Power supply		0.5	C/VV

Table 3. ESD Protection Characteristics

Test Methodology	Class	
Human Body Model (per JESD22A114)	Class 2	


Table 4. Electrical Characteristics of each path: A or B (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	$V_{ exttt{DSS}}$	65			V
(V _{GS} =0V; I _D =100uA)	V DSS	65			V
Zero Gate Voltage Drain Leakage Current	I _{DSS}			10	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	IDSS			10	μА
GateSource Leakage Current	I _{GSS}			1	μА
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			ı	μΛ
Gate Threshold Voltage	$V_{GS}(th)$		1.75		V
$(V_{DS} = 28V, I_D = 600 \text{ uA})$	V GS(UII)		1.75		V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.4		V
(V _{DD} = 28V, I _{DQ} = 100 mA, Measured in Functional Test)	V GS(Q)		2.4		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system) of of each path: A or B: V_{DD} = 28 Vdc, I_{DQ} =5 mA, f = 2450MHz

VSWR 10:1 at 50W pulse CW Output Power	No Device Degradation
--	-----------------------

Figure 2 Efficiency and power gain as function of Pout

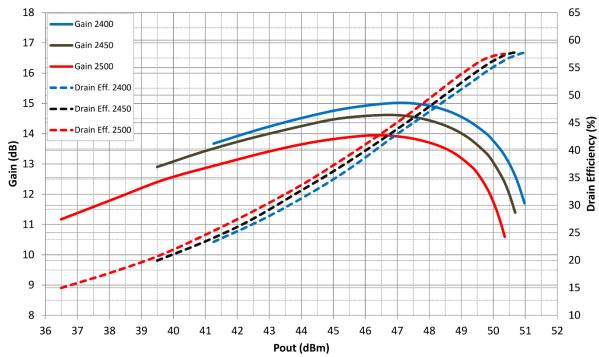


Figure 3: Network analyzer output, S11 and S21

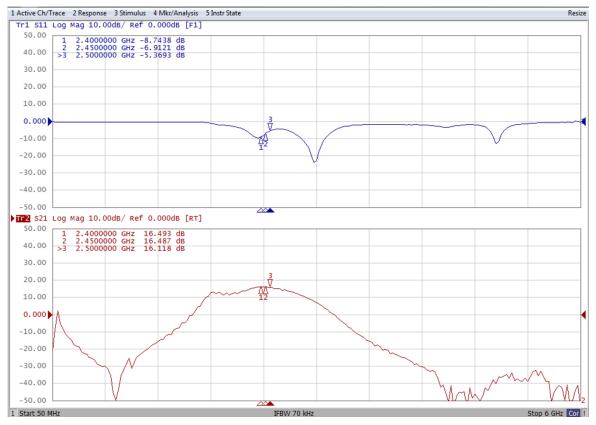
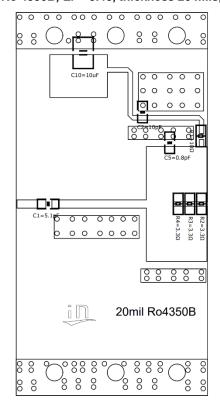
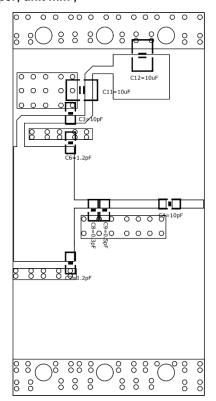
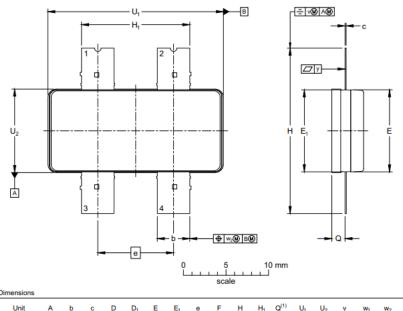




Figure 4: Layout picture (original Gerber file upon request)

Board material: Ro 4350B, Er = 3.48, thickness 20 mils, 1oz copper, unit mm,


Table 5. List of components

Reference	Reference Footprint		Quantity
C2, C3, C4	0603	10pF/250V	3
C1	0603	5.1pF/250V	1
C5	0603	0.8pF/250V	1
C6, C7	0603	1.2pF/250V	2
C8	0603	0.3pF/250V	1
C9	0603	0.5pF/250V	1
C10, C11, C12	1210	10uF/100V	3
R1	0603	10R	1
R2, R3, R4	0603	3.3R	3
/	B4C	ITEH25100B4C	1



Package Outline

Earless Flanged Ceramic Package; 4 leads

Drain		Gate		Source	
1	2	3	4	5	

Unit A b c D D₁ E E₁ e F H H₁ Q⁽¹⁾ U₁ U₂ v w₁ w₂ y max 4.01 3.91 0.18 20.42 20.37 9.80 9.75 mm nom nom nom 3.40 3.71 0.13 20.12 20.17 9.50 9.55 0.94 19.33 12.57 1.45 20.50 9.70

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/5/11	V1	Preliminary Datasheet Creation based on Path A 50W data
2024/7/4	V1.1	Add 100W data as Path A+B

Application data based on ZBB-23-23/24-21

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.