80W, HF to UHF, 28V High Power RF LDMOS FETs

Description

The ITGV10160A2C is a 80-watt capable, high performance, highly rugged, unmatched LDMOS transistor, designed for any general applications at frequencies from HF to UHF, in new generation highly cost effective open cavity package.

• Typical CW performance

V_{DS} = 28V, I_{DQ} =500mA, V_{GS} =3.58V

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
390	50.12	102.9	55.1	23.61	50.72	118.2	58.9
410	48.99	79.3	56.9	25.06	50.33	107.9	64.8
430	47.9	61.7	58.6	23.46	49.4	87.1	68.2

Recommended driver: ITEH40001P3

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 136-174MHz (Commercial ground communication)
- •

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

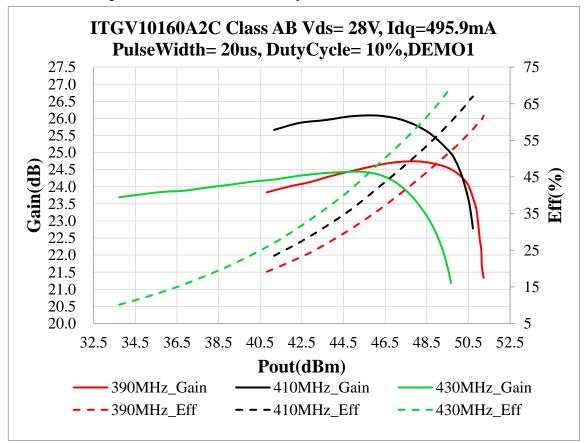
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+110	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V _{dd}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case T_{C} = 85°C, T_{J} =200°C, DC test	Rejc	0.9	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2


Document Number: ITGV10160A2C Preliminary Datasheet V1.0

Characteristic	Symbol	Min	Тур	Max	Unit
OC Characteristics (per half section)					
Drain-Source Voltage			110		N/
V _{GS} =0, I _{DS} =1.0mA	$V_{(BR)DSS}$		110		V
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 75V, V_{GS} = 0 V)$	DSS			I	μA
Zero Gate Voltage Drain Leakage Current				1	A
$(V_{DS} = 28V, V_{GS} = 0 V)$	DSS			I	μA
GateSource Leakage Current				1	A
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μA
Gate Threshold Voltage	M (iii)		2.65		V
$(V_{DS} = 28V, I_D = 600 \ \mu A)$	$V_{GS}(th)$		2.65		v
Gate Quiescent Voltage			2.5		V
$(V_{\text{DD}}$ = 28 V, I_{D} = 750 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.5		V
oad Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{\scriptscriptstyle D}$	$_{DD} = 28 \text{ Vdc}, I_{DQ} = 75$	50 mA, f =700N	/Hz, pulse wid	th:100us, duty	cycle:10%
Load 10:1 All phase angles, at 80W Pulsed CW Output Power	No Device D	egradation			

Table 4. Electrical Characteristics (T_A = 25 $^{\circ}$ C unless otherwise noted)

TYPICAL CHARACTERISTICS

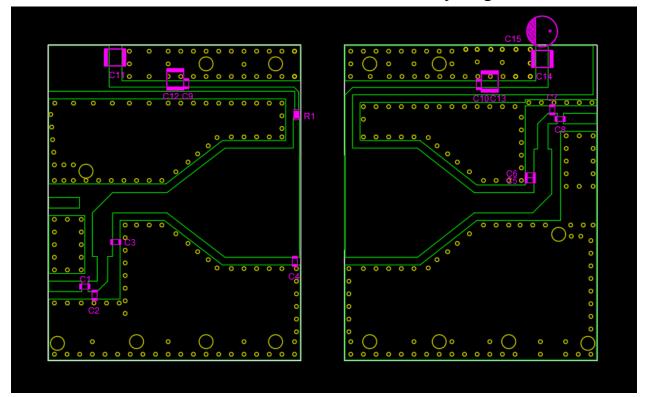

Figure 1: CW Gain and Power Efficiency as a Function of Pout at 390-430MHz

Figure 2: Network analyzer output S11/221

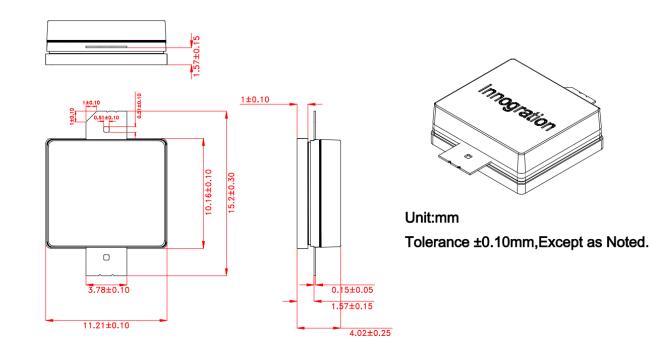

Reference Circuit of Test Fixture Assembly Diagram

Table 5. Test Circuit Component Designations and Values

Reference	Footprint	Value	Quantity
C8, C9, C10	0603	100pF	3
C1	0603	30pF	1
C2, C7	0603	12pF	2
C3, C4	0603	24pF	2
C5	0603	15pF	1
C6	0603	ЗрF	1
R1	0603	10R	1
C11, C12, C13, C14	1210	10uF/63V	4
C15		470uF/63V	1
U1	C6	ITGV10160A2C	1

Package Dimensions

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status	
2024/9/13	Rev 1.0	Preliminary Datasheet Creation	

Application data based on ZYX-24-61

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.