Document Number: STBV101K5RD4 Preliminary Datasheet V1.1

STBV101K5RD4

GaN 50V, 1200W, 915MHz RF Power Transistor

Description

The STBV101K5RD4 is a 1200Wcapable, single ended, internally matched GaN HEMT, ideal for ISM or RF energy applications at 915MHz

There is no guarantee of performance when this part is used outside of stated frequencies.

Please notice that both leads at input and output side are internally connected, to configure this device as single ended ,shown as right picture.

It is recommended to operate this device around 1000W CW

Typical RF performance at 915MHz applications

Vds=50V, Vgs=-4.2V, Tc=25 degree C

Pulsed CW: 20us, 10% duty cycle,

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
915	59.8	955.3	75.0	17.85	60.87	1221.5	81.4

CW

Freq (MHz)	Pin (dBm)	Pout (dBm)	Pout (W)	Ids (A)	Gain(dB)	Eff(%)
915	42.3	60.01	1000	27.70	17.7	75.21
915	44.3	60.68	1170	31.20	16.4	78.13

Recommended driver: ITGV20040J2 (50V LDMOS)

Applications

- 915MHz RF Energy
- P band power amplifier
- · Avionics Power Amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5~V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

able 1. maximum ratings							
Rating	Symbol	Value	Unit				
DrainSource Voltage	V _{DSS}	+200	Vdc				
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc				
Operating Voltage	V _{DD}	55	Vdc				
Maximum gate current	Igs	198	mA				
Storage Temperature Range	Tstg	-65 to +150	°C				
Case Operating Temperature	T _C	+150	°C				
Operating Junction Temperature	TJ	+225	°C				

Table 2. Thermal Characteristics

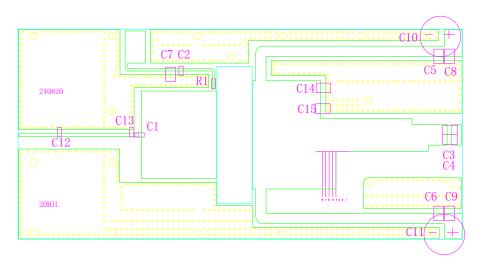
Characteristic	Symbol	Value	Unit
----------------	--------	-------	------

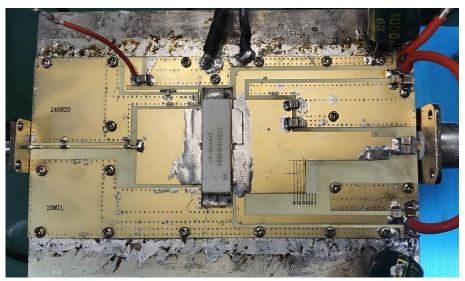
Document Number: STBV101K5RD4 Preliminary Datasheet V1.1

Thermal Resistance, Junction to Case by FEA	R ₀ JC	0.3	°C /W
T _C = 25°C, at Pd=350W	11000	0.3	0711

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=198mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID =198mA	$V_{GS(th)}$	-4	-	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=500mA, Measured in Functional Test	$V_{GS(Q)}$		3.3		V


Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	915MHz, Pout=1000W pulse CW All phase,	VSWR		10:1		
	No device damages					

Reference Circuit of Test Fixture Assembly Diagram

DXF file upon request

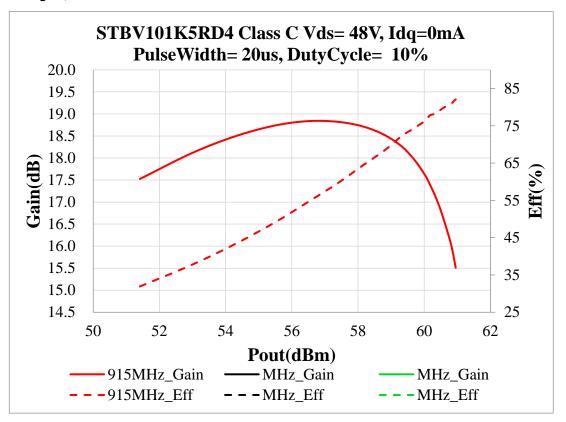
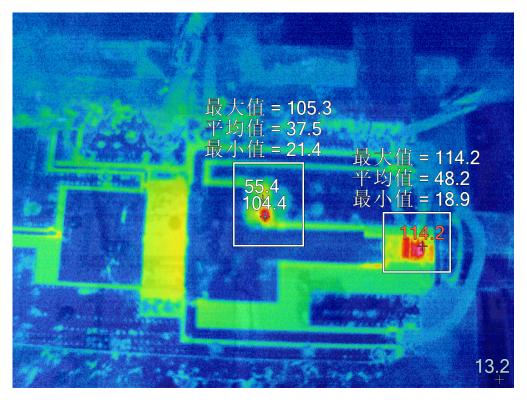
Document Number: STBV101K5RD4 Preliminary Datasheet V1.1

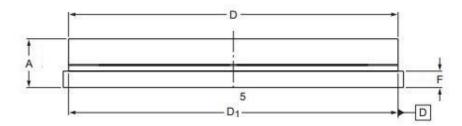
Designator	Footprint	Comment	Quantity
C1, C2	0603/0805	47pF	2
C3, C4	1210	27pF	2
C5, C6	1210	47pF	2
C7, C8, C9	1210	10uF/100V	5
C11, C11		1000uF/63V	2
C12	0603/0805	3.0 pF	1
C13	0603/0805	12 pF	1
C14	1210	4.3 pF	1
C15	1210	8.2 pF	1
R1	0603	10 Ω	1

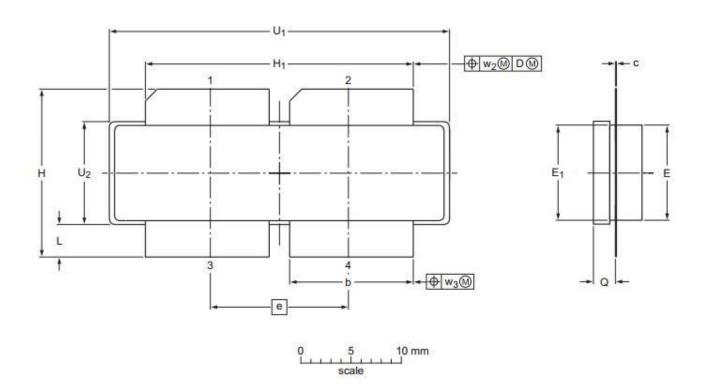
TYPICAL CHARACTERISTICS

Figure 2: S11/S21 output from Network analyser (VDS= 50V, IDQ=500 mA Vgs =-3.3V)

Figure 3: Power gain, Eff as function of Pout


Figure 4: Thermal scan image on PCB when Pout=1000W CW



Package Outline

Earless flanged ceramic package; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	Q	U ₁	U ₂	W_2	W ₂
mm	4.7	11.81	0.18	31.55	31.52	12.72	9.50	9.53	1.75	17.12	25.53	3.48	2.26	32.39	10.29	0.25	0.25
"""	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	2.01	32.13	10.03	0.25	0.25
inahaa	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.089	1.275	0.405	0.01	0.04
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.079	1.265	0.395	0.01	0.01

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-D4					03/12/2013

Document Number: STBV101K5RD4 Preliminary Datasheet V1.1

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/1/29	Rev 1.0	Preliminary datasheet creation
2024/11/20	Rev 1.1	Add CW performance to state CW supportable

Application data based on: LSM-24-05

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.